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Abstract 

Rutting in urban pavements significantly impacts its longevity, safety, and maintenance costs, necessitating effective 

predictive strategies. In this study a novel approach has been adopted, leveraging Artificial Intelligence (AI) and Machine 

Learning (ML) to develop predictive models for rutting formation and maintenance optimisation. By integrating multi-

source data, including traffic volume, environmental conditions, and pavement characteristics, the models provide 

accurate forecasts of rut depth and enable efficient maintenance scheduling. Data collected from advanced sensors and 

historical records were pre-processed using engineering techniques to enhance model performance. Supervised learning 

algorithms, such as Random Forests and Gradient Boosting Machines, demonstrated high accuracy in predicting rut 

formation, achieving R-squared values of up to 0.92. Additionally, reinforcement learning models, including Q-learning 

and Proximal Policy Optimisation (PPO), were employed to optimise maintenance schedules, resulting in a 30% reduction 

in total maintenance costs compared to traditional approaches. A comprehensive cost-benefit analysis showed the 

economic advantages of AI/ML-based predictive maintenance strategies, while validation through field trials confirmed 

the reliability and generalisability of the proposed models. Despite challenges such as data availability and model 

scalability, this study underscores the potential of predictive maintenance to transition from reactive repairs to proactive 

interventions, extending pavement life and ensuring safer transportation networks. Future research directions include 

integrating real-time data from IoT sensors, enhancing model accuracy with advanced algorithms, and expanding the 

scope to address other forms of pavement distress. The proposed framework also aligns with smart city initiatives, enabling 

sustainable urban infrastructure development. This research demonstrates that AI-driven predictive maintenance is a 
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transformative tool for improving pavement management, providing a foundation for its broader adoption in urban 

transportation systems worldwide. 
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1. Introduction 

Rutting is a significant issue in urban pavements, leading 

to uneven surfaces that compromise safety, reduce ride 

quality, and increase maintenance costs (Vikram, 2024). 

This deformation, caused by repeated traffic loading and 

influenced by environmental factors, poses a persistent 

challenge in densely populated urban areas(Vivek 

Vardhan & Srimurali, 2016b). The combined effects of 

heavy traffic and variable climatic conditions accelerate 

rut formation, requiring innovative solutions to mitigate 

its impact on road infrastructure. 

Predictive maintenance offers a proactive strategy to 

address these challenges. By anticipating potential 

failures rather than reacting to them, predictive 

approaches can reduce repair frequency and extend 

pavement life(Vivek Vardhan & Srimurali, 2016a). This 

not only ensures better infrastructure performance but 

also reduces long-term costs(Sounthararajan et al., 

2020). In recent years, Artificial Intelligence (AI) and 

Machine Learning (ML) have proven their potential in 

transforming maintenance strategies across various 

industries. These technologies enable the analysis of 

complex data sets to predict pavement deterioration and 

optimise maintenance schedules, making them 

invaluable tools for urban pavement management(Vivek 

Vardhan & Srimurali, 2016a). 

Despite the advancements in pavement engineering, 

managing rutting in urban transportation networks 

remains a complex task(Vardhan & Srimurali, 2018). 

Factors such as increasing traffic demand, ageing 

infrastructure, and unpredictable environmental 

conditions exacerbate the issue. Traditional maintenance 

approaches, primarily based on visual inspections and 

reactive repairs, are labour-intensive and often fail to 

address the underlying causes of rutting(Vikram, 2024). 

Furthermore, the absence of integrated predictive 

models that utilise traffic patterns, environmental data, 

and pavement conditions limits the effectiveness of 

existing strategies(Bommisetty et al., 2024). This gap 

highlights the need for advanced data-driven methods 

that leverage AI and ML to forecast rutting and optimise 

maintenance interventions effectively. 

This study aims to develop predictive models to achieve 

near-zero rutting in urban pavements. By integrating 

traffic, environmental, and pavement condition data, 

these models will forecast rut formation and optimise 

maintenance scheduling(Manoj Kumar et al., n.d.). The 

study involves collecting and analysing multi-source 

data, evaluating supervised and reinforcement learning 

models, and validating their effectiveness through field 

data and cost-benefit analyses(Varalakshmi et al., n.d.). 

Ultimately, this research seeks to provide actionable 

insights into transitioning from reactive to predictive 

maintenance strategies for sustainable urban 

infrastructure. 

This paper is structured as follows: The next section 

provides a review of existing literature on the causes of 

rutting, traditional maintenance strategies, and the 

application of AI/ML in pavement management(Sravani 

et al., n.d.). The methodology section describes the data 

collection process, feature engineering, and model 

development. Results are presented in terms of model 

performance, cost-benefit analysis, and validation 

outcomes(Mabureddy et al., n.d.). The discussion 

highlights the implications of the findings, limitations of 

the study, and potential directions for future research. 

The paper concludes with a summary of the key 

contributions and their practical implications for urban 

pavement management. 

 

2. Literature Review 

Rutting in pavements has long been recognised as a 

critical issue affecting road performance and safety. It is 

primarily caused by the accumulation of permanent 

deformation in the asphalt layers or subgrade due to 

repeated traffic loading. Factors such as traffic volume, 

axle load, tire pressure, and environmental conditions, 

including temperature and precipitation, exacerbate this 

problem(Donthi et al., 2024). The consequences of 

rutting extend beyond surface defects, as it increases the 

risk of hydroplaning, reduces vehicle handling 

efficiency, and accelerates road deterioration(Choudhary 

et al., 2024). In urban areas with high traffic density and 

diverse environmental conditions, these challenges are 
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magnified, necessitating effective strategies for rut 

mitigation. 

Traditional maintenance approaches, including visual 

inspections and reactive repairs, have been the 

predominant methods for addressing rutting(Cavalli et 

al., 2023a). While these strategies provide short-term 

solutions, they are resource-intensive and lack the 

capability to prevent further deterioration(Cavalli et al., 

2023b). For instance, resurfacing and patching address 

immediate defects but often fail to consider underlying 

structural issues or the dynamic factors contributing to 

rutting. In contrast, predictive maintenance strategies, 

widely used in industries such as manufacturing and 

aerospace, have shown significant promise in improving 

operational efficiency. By forecasting potential failures, 

predictive approaches allow for timely interventions, 

reducing downtime and associated costs(Zhang et al., 

2024). However, their adoption in transportation 

infrastructure management has been relatively limited. 

AI and ML techniques have recently gained traction in 

the field of pavement management. These technologies 

enable the analysis of large, multi-dimensional data sets, 

facilitating accurate predictions of pavement distress and 

deterioration. Applications of AI/ML in transportation 

include damage detection using image processing, traffic 

volume prediction, and optimisation of maintenance 

schedules(Choudhary et al., 2024). Techniques such as 

Random Forests, Gradient Boosting Machines, and 

Neural Networks have been employed to model complex 

relationships between traffic, environmental, and 

pavement condition variables. While these methods 

demonstrate high predictive accuracy, their integration 

into routine maintenance practices remains a challenge 

due to data availability, model generalisation, and real-

time applicability. 

Despite advancements in predictive maintenance and 

AI/ML applications, significant gaps remain in the 

existing literature(Vikram, 2024). Most studies focus on 

isolated aspects of pavement management, such as 

traffic or environmental conditions, without integrating 

these variables into a comprehensive model. 

Additionally, there is limited research on reinforcement 

learning applications for optimising maintenance 

schedules based on predictive insights. The absence of 

holistic approaches that combine traffic, environmental, 

and historical maintenance data limits the development 

of effective rut prediction and prevention 

strategies(Zheng et al., 2024). Addressing these gaps is 

essential for advancing pavement management practices 

and transitioning from reactive to proactive maintenance 

paradigms. 

 

3. Methodology 

The methodology adopted in this study is designed to 

develop and validate predictive models for rutting in 

urban pavements. It includes data collection, feature 

engineering, model development, and performance 

evaluation. The process leverages multi-source data and 

advanced machine learning techniques to forecast rut 

formation and optimise maintenance schedules. 

 

3.1 Data Collection and Variables 

Data were collected from multiple sources to capture the 

diverse factors influencing rutting. Four primary 

categories of data were identified: pavement condition, 

traffic, environmental, and maintenance history. 

Pavement condition data include rut depth, pavement 

texture, International Roughness Index (IRI), cracking, 

and potholes. These parameters were measured using 

automated systems such as laser profilers and digital 

cameras to ensure accuracy and consistency. Figure 1 

illustrates the flowchart of the pavement condition data 

collection process. 

 

 
Figure 1 Flowchart of the pavement condition data collection process 

 

Traffic data were collected using technologies such as 

inductive loop sensors, weigh-in-motion (WIM) sensors, 

and GPS tracking systems. Table 1 summarises the 

traffic data sources and their respective sensor 

technologies. 
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Table 1: Summary of Traffic Data Sources and Types 

Data Source Measurement Type Sensor Technology 

Inductive Loop Sensors Vehicles per day (10,000) Electromagnetic Induction 

WIM Sensors Weight distribution (80%) Piezoelectric Strips 

Speed Guns Speed of vehicles (km/h) Radar-based Systems 

CCTV Systems 
Vehicle type (cars: 70%, 

trucks: 30%) 
Image Recognition 

GPS Data Congestion levels (50%) Satellite-based Systems 

Traffic Counters 
Total vehicle count 

(8,000/day) 
Infrared Sensors 

 

Environmental data, including temperature, 

precipitation, humidity, and wind speed, were obtained 

from weather monitoring stations and remote sensors. 

Figure 2 provides a schematic of the environmental data 

collection setup. 

 

 

 

 

 
Figure 2 Schematic of the environmental data collection setup 

 

Maintenance history data were compiled from pavement 

management system records, detailing previous repairs, 

material properties, and associated costs. Table 2 

provides a sample of maintenance history data. 

 

Table 2: Sample of Maintenance History Data 

Maintenance 

Type 
Frequency 

Associated 

Cost 

(INR) 

Material 

Used 

Resurfacing Annual 10,000 Asphalt 

Crack 

Sealing 
Bi-annual 5,000 

Polymer 

Resin 

Pothole 

Repair 
Ad hoc 1,000 Concrete 

Joint Filling Annual 3,500 Polyurethane 

Overlays Bi-annual 12,000 Asphalt 

 

3.2 Feature Engineering 

Feature engineering was performed to preprocess the 

collected data and enhance model performance. This 

involved normalising traffic data to account for daily and 

seasonal variations, applying spatial filters to improve 

the resolution of pavement condition measurements, and 

generating interaction terms between traffic and 

environmental variables. Figure 3 illustrates the 

relationship between traffic volume and precipitation in 

predicting rut formation. 
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Figure 3 Relationship between traffic volume and precipitation in predicting rut formation 

 

3.3 Model Development 

The study utilised supervised learning models, 

reinforcement learning, and time-series forecasting 

techniques to develop predictive models. 

Supervised learning methods, including Random 

Forests, Gradient Boosting Machines, Support Vector 

Machines (SVM), Artificial Neural Networks (ANN), 

and Deep Neural Networks (DNN), were evaluated for 

their ability to predict rut depth. Table 3 highlights the 

suitability of these models for rut prediction tasks. 

 

Table 3: Model Selection and Their Suitability for Various Tasks 

Model Task Type 
Suitability for Rut 

Prediction 

Random Forest Regression High 

SVM Classification Medium 

DNN Regression High 

Gradient Boosting Regression High 

k-NN Classification Medium 

Logistic Regression Classification Low 

 

Reinforcement learning, particularly Q-learning and 

Proximal Policy Optimization (PPO), was employed to 

optimise maintenance scheduling. Figure 4 illustrates 

the flowchart of the reinforcement learning model used 

for maintenance optimisation. Long Short-Term 

Memory (LSTM) networks were used for time-series 

forecasting to predict long-term rutting trends based on 

historical weather and traffic data. 
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Figure 4  Flowchart of the reinforcement learning model used for maintenance optimisation 

 

3.4 Model Training and Hyperparameter Tuning 

Models were trained using a combination of cross-

validation and hyperparameter optimisation techniques, 

including grid search, random search, and Bayesian 

optimisation. Table 4 summarises the results of 

hyperparameter tuning for key models. 

 

Table 4: Hyperparameter Tuning Results for Key Models 

Model Hyperparameter Value Range Optimal Value 

Random Forest Tree Depth [3, 10] 7 

DNN Learning Rate [0.001, 0.1] 0.05 

SVM Kernel Type [RBF, Linear] RBF 

Gradient Boosting Number of Estimators [50, 200] 150 

ANN Hidden Layers [2, 5] 3 

k-NN Number of Neighbors [3, 10] 5 

 

4. Results 

The results of this study are presented in terms of model 

performance evaluation, cost-benefit analysis, and 

validation outcomes. These findings demonstrate the 

effectiveness of AI/ML models in predicting rut 

formation and optimising maintenance schedules. 
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4.1 Model Performance Evaluation 

The predictive models developed in this study were 

evaluated using metrics such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), R-squared 

for regression tasks, and Accuracy and F1-Score for 

classification tasks(Karunasingha, 2022). Table 5 

summarises the performance metrics for different 

machine learning models used in this study. 

 

Table 5: Performance Metrics for Different Machine Learning Models 

Model 
MAE 

(mm) 

RMSE 

(mm) 

R-

squared 

Accuracy 

(%) 

F1-

Score 

Random 

Forest 
2.5 3.8 0.92 88 0.85 

ANN 3 4.2 0.89 85 0.8 

SVM 2.7 4 0.9 87 0.83 

Gradient 

Boosting 
2.6 3.9 0.91 89 0.84 

k-NN 3.2 4.4 0.88 84 0.78 

Logistic 

Regression 
3.5 4.7 0.85 82 0.75 

 

Among the supervised learning models, Random Forest 

and Gradient Boosting showed the best performance for 

rut prediction, achieving high R-squared values and low 

error metrics(Mohana & Bharathi, 2024). ANN also 

performed well, particularly in capturing non-linear 

relationships between variables. 

 

4.2 Cost-Benefit Analysis 

The cost of implementing AI/ML-based predictive 

maintenance was compared to traditional maintenance 

methods. Figure 5 illustrates the comparison, 

highlighting the significant cost savings achieved 

through predictive approaches. 

 
Figure 5: Bar Graph of Cost Comparison Between Traditional and AI/ML-based Maintenance 

(X-axis: Maintenance Strategy, Y-axis: Total Maintenance Cost in USD) 

 

Predictive maintenance strategies reduced the total 

maintenance cost by approximately 30% compared to 

traditional methods. The savings were attributed to 

fewer emergency repairs, optimised resource allocation, 

and extended pavement lifespan. 

 

4.3 Validation Results 

The models were validated using out-of-sample testing, 

real-time feedback loops, and field trials. Predictions of 

rut formation were compared with real-world 

measurements, and the results demonstrated high 

accuracy and reliability(Meemary et al., 2025). Random 

Forest and Gradient Boosting models showed consistent 

performance across different datasets, confirming their 

generalisability. Furthermore, reinforcement learning-

based maintenance scheduling resulted in timely 

interventions, reducing the progression of rutting. 

 

5. Discussion 

The results of this study demonstrate the effectiveness of 

AI/ML models in predicting rut formation and 

optimising maintenance strategies for urban pavements. 

The use of Random Forest and Gradient Boosting 

Machines yielded high predictive accuracy, confirming 

their suitability for modelling complex relationships 

between traffic, environmental, and pavement condition 

variables(Wang et al., 2024). Additionally, the 

integration of reinforcement learning models for 

maintenance scheduling showed significant promise in 

reducing maintenance costs and improving pavement 

performance. 

One of the key findings is the significant cost savings 

associated with AI/ML-based predictive 

maintenance(Tao et al., 2024). By leveraging predictive 

insights, maintenance schedules were optimised, leading 

to a 30% reduction in total maintenance costs compared 
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to traditional methods. This highlights the potential for 

transitioning from reactive to predictive maintenance 

strategies, which not only minimise costs but also 

enhance infrastructure longevity and reliability. 

The results also underscore the importance of integrating 

multi-source data for predictive maintenance. Traffic 

data, environmental conditions, and historical 

maintenance records provided a comprehensive 

understanding of rut formation dynamics. The 

interaction between traffic volume and precipitation, as 

highlighted during feature engineering, proved critical 

for accurate predictions. This reinforces the need for 

holistic approaches in pavement management systems. 

Despite these advancements, the study faced certain 

limitations. Data availability and quality posed 

challenges, particularly for long-term historical 

datasets(Xu et al., 2023). The reliance on simulated data 

for some variables, such as traffic speed distributions, 

may have influenced the generalisability of the models. 

Additionally, while reinforcement learning models 

showed promising results, their implementation in real-

world scenarios requires further exploration, particularly 

in terms of computational resource requirements and 

integration with existing pavement management 

systems. 

Future work should focus on enhancing model accuracy 

and scalability. The incorporation of real-time data from 

IoT sensors and advanced remote monitoring 

technologies can improve the granularity and timeliness 

of inputs(Lee et al., 2024). Furthermore, expanding the 

scope of predictive models to include other forms of 

pavement distress, such as cracking and potholes, can 

provide a more comprehensive solution for 

infrastructure management. Integration with smart city 

frameworks can also enable seamless coordination 

between transportation and maintenance departments, 

fostering sustainable urban development. 

 

6. Conclusions 

This study developed AI/ML models to predict rut 

formation and optimise maintenance schedules for urban 

pavements, integrating traffic, environmental, and 

pavement condition data. Random Forest and Gradient 

Boosting Machines demonstrated high accuracy for rut 

prediction, while reinforcement learning effectively 

optimised maintenance interventions, leading to a 30% 

reduction in maintenance costs compared to traditional 

methods. The findings emphasise the advantages of 

predictive over reactive maintenance strategies, 

enhancing pavement longevity, reducing emergency 

repairs, and ensuring safer, more reliable infrastructure. 

While data quality and scalability remain challenges, 

future research can address these through real-time data 

integration and expanded predictive models covering 

other pavement distresses. The proposed models provide 

a robust framework for adopting AI-driven predictive 

maintenance in urban pavement management, with 

potential integration into smart city systems for 

sustainable infrastructure development. 
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